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Abstract

Motivation: As concurrent use of multiple medications becomes ubiquitous among patients, it is crucial to
characterize both adverse and synergistic interactions between drugs. Statistical methods for prediction
of putative drug-drug interactions can guide in-vitro testing and cut down significant cost and effort. With
the abundance of experimental data characterizing drugs and their associated targets, such methods
must effectively fuse multiple sources of information and perform inference over the network of drugs.
Results: We propose a probabilistic approach for jointly inferring unknown drug-drug interactions from
a network of multiple drug-based similarities and known interactions. We use the highly scalable and
easily extensible probabilistic programming framework Probabilistic Soft Logic. We compare against two
methods including a state-of-the-art drug-drug interaction prediction system across three experiments
and show best performing improvements of more than 50% in AUPR over both baselines. We find five
novel interactions validated by external sources among the top-ranked predictions of our model.
Availability: Final versions of all datasets and implementations will be made publicly available.
Contact: dsridhar@ucsc.edu

1 Introduction

Increasingly, patients use multiple pharamceutical drugs simultaneously
to treat their illnesses. Interactions between drugs can result in reduced
efficacy of one or more drugs, and in some cases, even deletrious side-
effects. The risk of adverse effects is higher in demographics like the
elderly that commonly take multiple medications at once. On the other
hand, certain drugs interact to produce synergistic effects that are more
effective in combatting diseases like cancer (Nahta et al., 2004; Chou,
2010). Crowther et al. (1997) characterizes a drug-drug interaction (DDI)
as a drug effect that is greater or less than expected in the presence
of another drug. While it remains crucial to verify potential DDIs
in vitro, it is prohibitively expensive to exhaustively test all possible
interactions. Therefore, computational modeling and predictive methods
provide a viable way to identify the most salient potential interactions for
downstream experimental validation (Zhang et al., 2009).

Interactions between drugs are classified as pharmacokinetic and
pharmacodynamic. Computational and mathematical modeling methods
rely on current understanding of the mechanisms underlying each of

these types of interactions and are specific to each interaction type. A
pharmacokinetic interaction with a drug affects the process by which
the other drug is absorbed, distributed, metabolized or excreted in the
body (Crowther et al., 1997). On the other hand, drugs acting on
the same receptor, site of action, or physiological system constitutes
a pharmacodynamic interaction. While pharmacokinetic interactions
are usually associated with an adverse or exaggerated response,
pharmacodynamic interactions are implicated in both synergistic and
detrimental effects. Many pharmacokinetic interactions are facilitated by
the enzyme family Cytochrome P450 (CYP) and extensive but incomplete
knowledge of its mechanisms have been used for computational modeling
of pharmacokinetic interactions (Ekins and Wrighton, 2001). Similarly,
prior work has applied mathematical modeling of known drug response
mechanisms to simulate and predict pharmacodynamic interactions
(Jonker et al., 2005; Jin et al., 2011).

In contrast to computational modeling, statistical and predictive
methods leverage data and evidence from related experiments as domain
knowledge and biological priors. Recent advancements in high-throughput
experimentation have generated a wealth of biological characterizations
of drug compounds and their target genes (Fakhraei et al., 2015). A key
challenge for statistical models of drug-drug interactions, or the closely
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related problem of drug-target interactions, lies in fusing or combining
information from multiple data sources. Much related work has developed
ways of computing similarity scores between drugs or pairs of drugs to
be used as features for machine learning classifiers (Cheng and Zhao,
2014; Gottlieb et al., 2012; Atias and Sharan, 2011; Vilar et al., 2014,
2013). Sophisticated algorithms such as restricted Boltzmann machines
and matrix factorization are especially effective in combining two types
of similarities by learning latent representations of the entities (Wang
and Zeng, 2013; Cao et al., 2015; Gönen, 2012), however, they do not
inherently support multiple similarities in the same model. Statistical
methods for DDI prediction are more generalizable as they do not rely on
extensive expert knowledge of each mode of interaction. Although Park
et al. (2015); Huang et al. (2013) apply their predictive methods only to
pharmacodynamic interactions, statisicals models can be easily extended
to both types of interactions. To the best of our knowledge, Gottlieb et al.
(2012) present state-of-the-art results for drug-drug interaction prediction
of both pharmacokinetic and pharmacodynamic interactions with their
INDI system for combining similarity measures to use features for a local
logistic regression classifier.

However, these similarity-based methods neglect the structural
information encoded in the biological network of drugs and their
interactions. Two general types of approaches have been studied for adding
network information to similarity-based features: methods that compute
additional network-based features and methods that perform inference
directly over the structure of the network. We refer to these as network-
similarity methods and network-based inference methods, respectively.
Both kinds of approaches begin by formulating a graph of drugs and their
interactions. Network-similarity methods proceed by computing relational
features, based on the local neighborhoods of drugs such as neighborhood
overlap and other well-studied network attributes (Cheng and Zhao, 2014;
Cao et al., 2015; Huang et al., 2013). The relational features supplement the
similarity information given as input to a classifier. In contrast, network-
based inference methods reason over the graph structure when predicting
interactions.

Multiple network-based inference approaches have been introduced for
the closely related problem of drug-target interaction prediction. Bleakley
and Yamanishi (2009) formulate the problem of inferring missing links
in a bipartite graph of drugs and targets, and introduce a model that uses
local bipartite structure for prediction. Cheng et al. (2012); Mei et al.
(2013) similarly leverage local bipartite topology for inference and Park
et al. (2015) introduce a random walk approach for reasoning over the
network of drugs and targets. However, local network-based features
cannot enforce global constraints based on the full graph of entities.
Given local relational features, current network-based inference methods
follow traditional machine learning algorithms in assuming the instances
to be independent and identically distributed. In recent work, Fakhraei
et al. (2014, 2013) improve upon existing bipartite drug-target interaction
prediction approaches using the probabilistic programming framework
Probabilistic Soft Logic (PSL) to jointly classify all interactions, fusing
similarity relations and global network information.

In this work, we formalize the problem of network-based drug-drug
interaction prediction using multiple similarity relations. We collectively
predict drug-drug interactions, considering statistical dependencies
between predictions along with knowledge of observed interactions using
Probabilistic Soft Logic. We apply our collective approach to predict
DDIs on three kinds of interactions: (1) CYP-related interactions (2) non-
CYP related interactions (3) general interactions documented by Drugbank
(Wishart et al., 2006). For all settings, we evaluate our collective approach
against two non-collective methods including state-of-the-art INDI system
of Gottlieb et al. (2012) and a non-collective PSL model. Our model
achieves statistically significant improvement up to 5% in area under the
ROC (AUC) results from Gottlieb et al. (2012). We further assess area

under the precision-recall curve (AUPR) for all methods and show that our
collective DDI prediction approach significantly outperforms the state-of-
the-art baseline method by up to 50%. Finally, we present important novel
DDIs predicted by our approach that are validated in literature.

2 Materials

We use two datasets for our experimental evaluation. The first dataset,
released by Gottlieb et al. (2012), includes pairwise interactions between
807 drugs, with the drug IDs anonymized . We constructed the second
dataset by extracting interactions from Drugbank for the 315 drugs used
by Fakhraei et al. (2014); Perlman et al. (2011), where Drugbank IDs
are provided for additional validation. The following section described
interaction types and similarities used in these datasets.

2.1 Drug Interaction Data

For the first dataset, Gottlieb et al. (2012) download 10,702 interactions
from DrugBank and 70,099 interactions listed as moderate or high from
Drugs.com website(Wishart et al., 2006). The dataset contains two types
of interactions: (1) CYP-related interactions (CRDs), where both drugs are
metabolized by the same cytochrome P450 (CYP) enzyme (2) non-CYP-
related interactions, where no CYP is shared between the drugs (NCRDs).
After filtering and processing, the final dataset includes 10,106 CRD and
45,737 NCRD DDIs (Gottlieb et al., 2012) across 807 drugs.

For the second dataset, we download interactions from DrugBank
version 4.3 for the 315 drugs used by Perlman et al. (2011); Fakhraei et al.
(2014). We cross referenced Drugbank IDs released for the 315 drugs to
extract the listed drug interactions, resulting in 4293 known interactions.

2.2 Drug Similarity Data

Both datasets contain seven drug-drug similarities. Four of these similarity
measures are drug-based: Chemical-based, Ligand-based, Side-effect-
based, Annotation-based. Three similarities are between drug targets and
computed by aggregating over known targets for the drugs: Sequence-
based, PPI network-based, and Gene Ontology-based. In the first dataset,
Gottlieb et al. (2012) average maximal similarities between the associated
targets for drugs that have more than one target. In the second dataset,
we average over all possible pairwise similarities between target genes for
drugs that have multiple targets.

Following section provides a brief description of the methods in
Gottlieb et al. (2012); Perlman et al. (2011) for similarity extraction:

Chemical-based is the Jaccard similarity, or closely related Dice similarity,
of molecular fingerprints from pairs of drugs. Molecular fingerprints are
retrieved from cheminformatics toolkits such as chemical development
kit (CDK) (Steinbeck et al., 2006) or RDKit using canonical SMILES1.
Fingerprinting methods represent molecules as bit strings for fast similarity
computation and are grouped into hashing-based and structural methods.
Hashed fingerprints such as the Daylight method rely on hash functions
to represent linear substructures of molecules as bit strings. Structural
fingerprints such as MACCS, Atom-Pair, Morgan and Feature-Based
Morgan methods use features of molecular substructures to compute bit
strings. The Jaccard and Dice similarity scores between two setsX and Y
are defined as

Jaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

,Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

1 Simplified Molecular Input Line Entry Specification
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We obtain all fingerprints described above from RDKit and additionally,
the hashed fingerprint from CDK computed with default values as used by
Gottlieb et al. (2012). In our experiments, we use the hashed fingerprint
from CDK after comparing performance of all fingerprinting methods on
development data.

Ligand-based is the Jaccard similarity between the corresponding sets
of protein-receptor families for each drug pair. The protein-receptor is
obtained from the similarity ensemble approach (SEA) search tool (Keiser
et al., 2009) Drugs’ canonical SMILES compared with a collection of
ligands2.

Side-effect-based is the Jaccard similarity score between common side-
effects for each pair of drugs.

Annotation-based is the Resnik semantic similarity (Resnik et al., 1999)
of Drugs’ ATC codes mapped to the World Health Organization ATC
classification system (Skrbo et al., 2003).

Sequence-based is the Smith-Waterman sequence alignment score
between the corresponding drug targets (proteins). They are normalized via
dividing the pairwise score by the geometric mean of the alignment scores
of each sequence against itself, suggested in Bleakley and Yamanishi
(2009).

Protein-protein interaction network-based is the distance between pairs
of corresponding drug targets using their corresponding proteins in the
human protein-protein interactions network via an all-pairs shortest path
algorithm.

Gene Ontology-based is the Resnik semantic similarity (Resnik et al.,
1999) between Gene Ontology annotations of drugs’ corresponding
targets.

For more detailed descriptions of these similarities, refer to Perlman
et al. (2011); Gottlieb et al. (2012).

3 Methods

3.1 The Problem of Drug-Drug Interaction Prediction

We consider the problem of inferring new edges in a partially observed
graph of interactions between drug vertices by leveraging multiple known
similarity relations between vertices. We are given a set of drugs D =

{D1 . . . Dn}. We observe a set of interaction edges between the drugs
denoted by n × n interaction matrix I where Iij = 1 indicates an
interaction between di and dj and is 0 indicates an unobserved or missing
edge. Additionally we are given a set ofn×ndrug-drug similarity relations
encoded by tables {M1 . . .Mk} where Mlij ∈ [0, 1] and indicates
similarity between di and dj according to biological similarity l.

We define a drug network as a multigraphG = (V,E) where V = D

is the vertex set of drugs and E = {M1 . . .Mk} ∪ I is the collection of
multiple edge types given by the similarity relations and the interaction
matrix I . The drug-drug interaction prediction problem is to use all the
information encoded in G to predict the unobserved interaction edges
between drug vertices in G.

3.2 Collective Probabilistic Reasoning for Network-based
Inference of Interactions

Given all the information G, we want to infer interaction values for
missing edges U = {(di, dj)|Iij = 0}. Many techniques have been

2 A substance that binds with a biomolecule to serve a biological purpose.

studied for inference of missing links but here we focus on the intersection
of two well known approaches: network-based methods and collective
probabilistic methods. Generally, network-based inference techniques
make use of the structure of G by considering the local neighborhoods
for each di and dj in edges we want to infer. For example, network-
based methods might include set similarity of the neighbors of di and dj
along with the local edge similarites encoded inG. Collective probabilistic
methods learn joint distributions P (U,G) to infer the most probable joint
assignment to all edges in U thereby leveraging statistical dependencies
between prediction targets as well as the observations inG. Network-based
collective methods combine the two techniques by parametrizingP (U,G)

according to structural features of G. Collective prediction methods have
been shown to work well in the closely related setting of drug-target
interaction prediction (Fakhraei et al., 2014). Below we describe hinge-
loss Markov random fields and probabilistic soft logic, a framework for
performing network based collective inference, and describe our model
for drug-drug interaction prediction.

3.2.1 Hinge-loss Markov Random Fields and Probabilistic Soft Logic
Our model for collective drug-drug interaction prediction uses a special
class of Markov random field (MRF). In this section, we review the
foundations of our model and describe its use in interaction prediction
between drugs.

Probabilistic Soft Logic (PSL) uses declarative, first order logic-like
syntax to template for a special class of Markov random field (MRF)
model known as hinge-loss MRFs (HL-MRFs). HL-MRFs admit efficient,
scalable and exact maximum a posteriori (MAP) inference (Bach et al.,
2015). These models are defined over continuous random variables, which
provide a natural interpretation for real-valued similarities. MAP inference
in HL-MRFs is a convex optimization problem over these variables.
Formally, a hinge-loss MRF defines a joint probability density function
of the form

P (Y|X) =
1

Z
exp

(
−

M∑
r=1

λrφr(Y,X)
)

, (1)

where the entries of target variables Y and observed variables X are in
[0, 1], λ is a vector of weight parameters, Z is a normalization constant,
and

φr(Y,X) = (max{lr(Y,X), 0})ρr (2)

is a hinge-loss potential specified by a linear function lr and optional
exponent ρr ∈ {1, 2}. Given a collection of logical implications based
on domain knowledge described in PSL and a set of observations from
data, the rules are instantiated, or grounded out, with known entities in
the dataset. Each instantiation of the rules maps to a hinge-loss potential
function as in Equation 2, and the potential functions define an HL-MRF
model.

To illustrate modeling in PSL, we consider a prototypical similarity
based rule that encourages transitive closure for link prediction between
entities a, b, c:

Similar(a, b) ∧ Link(b, c)→ Link(a, c)

where link represents the continuous target variable for a link prediction
task and similar is a continuous observed variable. The convex relaxation
of this logical implication for continuous truth values is

max(similar(a, b) + link(b, c)− link(a, c)− 1, 0)

and can be understood as its distance to satisfaction.

MAP inference minimizes the weighted, convex distances to
satisfaction to find an consistent joint assignment for all the target variables.
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Higher rule weights induce higher penalties for violating the rule increasing
its relative importance to other rules. Weights are learned from data through
maximum likelihood estimation using training data and the structured
perceptron algorithm. Exact MAP inference is performed on the learned
model to find the most likely assignments for variables using the consensus
based ADMM algorithm. PSL supports latent variable modeling with
additional EM-based learning algorithms. For a full description of PSL,
see Bach et al. (2015). Thus, PSL rules encode the domain knowledge
that leads to a consistent assignment to all target variables. HL-MRFs
have achieved state-of-the-art performance in many domains including the
collective drug-target interaction prediction task (Fakhraei et al., 2014).
The open source PSL software can be downloaded from the website
(http://psl.umiacs.umd.edu/).

3.2.2 Collective Drug-drug Interaction Prediction PSL Model

?

?

Si Sj Sk 

I 

I 

I 

Si 

Sj 

Sk 

Fig. 1: Triad-based drug-drug interaction prediction rules.

The rules of a PSL model capture beliefs or knowledge about the
problem domain. For the drug-drug interaction domain encoded by drug
network G, we assert that a drug is likely to be involved in an interaction
if it is similar to another drug that is a known interactor. To model the
notion of similarity, we are interested in fusing multiple sources of drug
similarity. We make this concrete in the full set of rules for drug-drug
interaction prediction shown in figure 2.

w1 : SimChemical(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)

w2 : SimLigand(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)

. . .

w7 : SimGO(D1, D2) ∧ Interacts(D2, D3)→Interacts(D1, D3)

Fig. 2: PSL model for collective drug-drug interaction prediction.

where we have one rule for each drug similarity described in section
2, resulting in seven rules. We represent the prediction target with the
Interacts(D1, D3) predicate. Given a set of drugs d1, d2, and d3 with
known interaction between d2 and d3, the rule results in groundings of the
form:

w1 : SimChemical(d1, d2) ∧ Interacts(d2, d3)→ Interacts(d1, d3)

w2 : SimChemical(d2, d3) ∧ Interacts(d3, d1)→ Interacts(d2, d1)

Fig. 3: Small subset of ground PSL rules.

We exclude multiple symmetric groundings for ease of exposition.
The ground rules illustrate the propagation of similarity information
between target variables as the prediction of Interacts(d1, d3) informs
the assignment of Interact(d2, d1). Following Fakhraei et al. (2014), we
refer to these as ‘triad rules’ as they encourage triangle completion, or
triadic closure. Figure 1 shows a schematic overview of the triad rules. The
predicted interaction edge provides evidence for other inferences, resulting
in a flow of information throughout the network. This form of collective
prediction leverages the full structure of the drug network graph G while

combining multiple sources of similarity information. To fully evaluate
the impact of joint prediction, we describe below two baseline methods
that work non-collectively and assume independence between predicted
interactions.

3.3 Comparison Methods

We compare against two non-collective methods including the state-of-
the-art INDI framework for inferring interactions between drugs (Gottlieb
et al., 2012). We describe each of these below.

3.3.1 State-of-the-art INDI method
Gottlieb et al. (2012) introduce the INDI framework for novel drug-
drug interaction prediction. They introduce a method for computing
similarity scores between target interaction edges to known interaction
edges based on the given drug-drug similarities. For each target drug-pair,
each pairwise combination of similarities is considered for computing the
similarity score to the most similar known drug interaction. The procedure
effectively performs nearest neighbor search using different similarity
distance measures. Each score is then used as a feature to train a logistic
regression classifier. We refer to Gottlieb et al. (2012) for full details.

3.3.2 Non-collective PSL Model
To quantify the effect of collective prediction, we also use a non-collective
PSL model that considers the dependencies between the target interactions
and observed interactions only, as in the INDI method. Formally, we
modify the triad rules above as follows: where we introduce the InteractsObs

w1 : SimChemical(D1, D2) ∧ InteractsObs(D2, D3)→Interacts(D1, D3)

. . .

w7 : SimGO(D1, D2) ∧ InteractsObs(D2, D3)→Interacts(D1, D3)

Fig. 4: Non-collective PSL model for drug-drug interaction prediction.

predicate to limit the triadic closure of predicted interactions to known
interactions only.

3.4 Experimental Protocol

In order to validate our collective drug-drug interaction prediction method
and compare against state-of-the-art methods, we perform experiments on
the two drug interaction networks described in section 3. For each dataset,
we perform ten-fold cross-validation across all pairs of interactions. We
use eight folds as interaction evidence or observations, one fold as training
labels to learn weights for the rules, and the final fold as a held-out test
set. All similarities between drugs are used as evidence, or features, for
the models. The similarity distributions are highly left-skewed, which is
problematic for the soft truth interpretation used by PSL, as values below
0.5 do not highly affect the inference. We transform all similaritity values
between drugs by taking the cube-root to normalize the distributions and
allow for proper interpretation by PSL.

We compute area under the precision-recall curve (AUPR) for the
positive class, area under the ROC (AUC) and F1 score on the test set.
Link prediction tasks usually suffer from class imbalance as true positive
links are sparse compared to true negatives. Related work on general link
prediction and DDI prediction report AUC because it is more robust to the
skewness than metrics such as accuracy. However, AUC is still sensitive
to the high number of negative examples. For practical downstream
biological validation of predicted DDIs, it is more important to have a
reliable ranking of candidate positive interactions. The precision-recall
curve better captures the effectiveness of models at discriminating true

http://psl.umiacs.umd.edu/
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positive examples. F1 score is another measure of classification accuracy
and can interpreted as a weighted average of precision and recall. Since
PSL outputs real-valued truth scores and logistic regression produces class
probabilities, we threshold the values to {0,1} to compute the F1 score.
We perform grid search over a range of threshold values between [0,1] to
obtain best-performing thresholds.

We implement the INDI feature computation method in Matlab

by extending a related implementation of the computation for the drug-
target interaction prediction setting (Fakhraei et al., 2014; Perlman et al.,
2011). We use the logistic regression classifier provided in the glmfit
package with default settings. For our models, we use the open-source
PSL framework. We run 700 iterations of the structured voted-perceptron
weight learning algorithm in PSL and use default settings for the ADMM
inference algorithm. We will make all code and datasets publicly available.

3.4.1 Blocking Methods for PSL
In a drug network with n drugs and n2 interactions where PSL considers
dependencies between pairs of interactions, the computational complexity
reaches O(n4), which quickly becomes expensive for large networks. To
make the approach scalable, we employ a common techniques to block
unimportant links from being grounded out by the model. In the PSL triad
rule setting, for each similarity i, we limit the possible Similari(D1, D2)

edges that are considered for each drugD1. By blocking on the similarity
links, we restrict the grounding of all possible triads to only the ones that
are most likely.

To block similarities in the grounded out PSL models, for each drug,
we perform nearest neighbor search to pick the top 15 most similar other
drugs as evidence for Simi(D1, D2). In the first drug dataset, for the
CRD interaction experiments, we use a more restrictive blocking method to
induce more sparsity since CRD interactions are rarer. When searching for
the 15 nearest neighbors for each drug, we restrict ourselves to those drugs
that have appeared in at least one observed interaction in the full network.
In this sparser setting, some drugs may not appear in any Simi(D1, D2)

groundings. For those drugs, we additionally retrieve five most similar
other drugs using standard nearest neighbor search and include the pairs
as evidence for Simi(D1, D2). Fakhraei et al. (2014) provide more
comprehensive analysis on techniques for blocking.

4 Results

4.1 Comparison to State-of-the-art Baselines

We compare our proposed collective PSL approach for DDI prediction
to two baselines including the state-of-the-art INDI system with 10-fold
cross-validation experiments. We apply the three methods to each fold
and report average and standard deviations of our chosen metrics for
each model. We refer to the INDI system as INDI, the non-collective
PSL baseline as NC-PSL, and collective PSL model as PSL. Tables 1-3
present average and standard deviation for area under the precision-recall
curve (AUPR) and area under the ROC (AUC) from cross-validation
experiments on the three interaction types from two datasets: (1) CYP-
related interactions (CRD) from Drugs.com and Drugbank (Gottlieb et al.,
2012) (2) Non-CYP-related interactions (NCRD) from Drugs.com and
Drugbank (Gottlieb et al., 2012) (3) General interactions from DrugBank.
Bolded results highlight statistically significant improvement over both
baselines with α = 0.05. Figures 5, 6 and 7 show precision-recall
curves of all methods plotted for interaction type settings (1), (2) and
(3) respectively. Additionally, to assess the benefit of fusing multiple
similarities, we compare against our collective PSL model implemented
with single similarities. Table 4 shows AUPR for the collective PSL model
for single similarities across interaction type settings (1), (2) and (3).

Table 1. Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models
for CRD interactions from dataset 1.

Method AUPR-Pos AUROC F1

INDI 0.15 ± 0.007 0.92 ± 0.003 0.24 ± 0.005 (t = 0.1 )

NC-PSL 0.15 ± 0.01 0.91 ± 0.004 0.23 ± 0.01 (t = 0.8)

PSL 0.34 ± 0.02 0.96 ± 0.003 0.4 ± 0.02 (t = 0.3)

Table 2. Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models
for NCRD interactions from dataset 1.

Method AUPR-Pos AUROC F1

INDI 0.64 ± 0.01 0.95 ± 0.003 0.63 ± 0.01 (t = 0.35)

NC-PSL 0.70 ± 0.006 0.96 ± 0.001 0.62 ± 0.01 (t = 0.9)

PSL 0.78 ± 0.006 0.97 ± 0.001 0.70 ± 0.01 (t = 0.3)

Table 3. Average AUPR, AUC and F1 scores (with best threshold t indicated),
and standard deviation for 10 fold CV comparing all DDI prediction models
for general interactions from dataset 2.

Method AUPR-Pos AUROC F1

INDI 0.47 ± 0.04 0.91 ± 0.01 0.51 ± 0.03 (t = 0.2)

NC-PSL 0.56 ± 0.04 0.95 ± 0.006 0.6 ± 0.03 (t = 0.5)

PSL 0.69 ± 0.02 0.96 ± 0.006 0.67 ± 0.02 (t = 0.4)

Table 4. Average AUPR and standard deviation for 10 fold CV for single
similarity collective DDI prediction models across all interaction types

Similarity CRD NCRD General

ATC 0.18 ± 0.01 0.73 ± 0.01 0.68 ± 0.02

Chemical 0.32 ± 0.02 0.58 ± 0.01 0.46 ± 0.04

Distance 0.31 ± 0.03 0.63 ± 0.004 0.35 ± 0.04

Gene Ontology 0.33 ± 0.02 0.63 ± 0.004 0.39 ± 0.04

Ligand 0.18 ± 0.01 0.67 ± 0.01 0.37 ± 0.03

Sequence 0.29 ± 0.02 0.63 ± 0.004 0.37 ± 0.04

Side Effect 0.30 ± 0.01 0.56 ± 0.01 0.51 ± 0.03

Fig. 5: Precision-recall curves comparing all DDI prediction models on CRD
Interactions dataset.

Fig. 6: Precision-recall curves comparing all DDI models on NCRD
Interactions dataset.
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Table 5. Top ranked PSL model predictions for interactions unknown in
DrugBank

Rank Drug Bank IDs Drug Bank IDs

1 DB00870; DB01418 Suprofen and Acenocoumarol
2 DB01067; DB00839 Glipizide and Tolazamide
3 DB01297; DB00806 Practolol and Pentoxifylline
4 DB00870; DB00806 Suprofen and Pentoxifylline
5 DB00272; DB01232 Betazole and Saquinavir
6 DB00870; DB01032 Suprofen and Probenecid
7 DB00939; DB01418 Meclofenamic acid and Acenocoumarol
8 DB00414; DB01032 Acetohexamide and Probenecid
9 DB01297; DB01392 Practolol and Yohimbine
10 DB01097; DB01262 Leflunomide and Decitabine

Fig. 7: Precision-recall curves comparing all DDI models on
general interactions dataset.

Gottlieb et al. (2012) report AUC results consistent with our evaluation
of the INDI system as given in tables 1 and 2. Our collective PSL model
statistically significantly outperforms both baselines in AUC, AUPR and
F1-score for all three interaction type prediction experiments. For AUPR,
in the best case CRD interactions setting, our collective model improves
up to 50% in AUPR over the state-of-the-art INDI system and non-
collective PSL model, from 0.15 to 0.34. For the NCRD and general
interactions, the collective PSL approach sees gains of up to 20% in
AUPR over both baselines. The collective model improves up to 0.05
in AUC over the state-of-the-art INDI method, with AUC as high as
0.97 for the NCRD interaction setting, signficantly improving over the
0.95 achieved by the INDI system. For F1-score, our collective model
improves close to 50% over the INDI and non-collective baselines for the
CRD setting and up to 30% for NCRD and general interaction settings.
Interestingly, the non-collective PSL method performs at least as well as
the INDI system in setting (1) and for settings (2) and (3), significantly
outperforms the INDI system in AUPR and AUC. This improvement by
the non-collective PSL model demonstrates the method’s effectiveness in
combining multiple similarities as well as or better than the state-of-the-art
similarity combination technique used by INDI. The gains achieved by the
fully collective PSL model highlights the benefits of joint inference over
the full drug-drug interaction network. Additionally, for all interaction
settings, the multiple similarity collective approach significantly improves
in AUPR over all individual similarity collective models. This result
supports the findings of Fakhraei et al. (2014); Gottlieb et al. (2012) that
multiple similarities benefit performance of both drug-target and drug-drug
interaction prediction tasks.

4.2 Validation of Unseen Interaction Predictions

In order for statistical methods to be useful for domain experts, predictive
models should produce highly probable novel interactions for subsequent
in vitro testing. Thus, following Gottlieb et al. (2012); Fakhraei et al.
(2014); Bleakley and Yamanishi (2009), we compare top-ranked, unseen
DDI predictions produced by our collective PSL model with evidence
from medical and biological data sources. These predictions are novel
with respect to Drugbank interactions used as training data and validate the
ability of our collective approach to produce salient interaction predictions
given observations.

For this experiment, we use predicted drug-drug interactions from
non-anonymized dataset 2 to cross-reference in literature. From our 10-
fold cross validation experiments, we output the predictions and filter out
those that are not present in Drugbank as verified interactions. We rank
these new predictions and consider the top 10 interactions as shown in
table 5. Bolded rows indicate drug pairs that are verified by literature or
another database as interactors, or have substantive supporting evidence
for potential interaction. We use the Interactions Checker tool provided by
drugs.com (http://drugs.com) for validation, as these interactions
were not used to train any of our models. Additionally, Drugbank provides
the BioInteractor tool that uses drug-target, -enzyme and -transporter
associations to predict highly probable interactions that are not included
in the main database. Our collective PSL approach highly ranks five
interactions that are substantiated by Interactions Checker or BioInteractor.
Some interactions involve the following four drugs that are no longer FDA
approved or used outside of the United States: Suprofen, Acenocoumarol
(used worldwide but not in U.S.), Practolol and Acetohexamide. Because
these drugs are presently less well-studied and documented, they arise
naturally as test cases for our validation study.

The top predicted interaction is between Suprofen, a non-steroidal anti-
inflammatory drug, and Acenocoumarol, an anticoagulant. BioInteractor
characterizes the effect of Suprofen on Acenocoumarol as a CYP
mediated pharmacokinetic interaction. The sixth most highly ranked
prediction involving Suprofen and Probenecid, a uricosuric agent used
to treat gout, is also classified by BioInteractor as a CYP related
interaction. Acetohexamide is in the sulfonylurea class of compounds
used to treat type-II diabetes and is predicted by our model to interact
with Probenecid, which is highly protein-bound. Interactions Checker
characterizes this particular interaction as enhancing the hypoglycemic
effects of sulfonyureas when taken together. The risk of using Probenecid
together with Acetohexamide is high with the elderly, who are commonly
treated simultaneously for gout and diabetes.

The collective PSL model also ranks Decitabine, used to treat
Leukemia, and Leflunomide, used for rheumatoid arthritis treatment,
as interactors. Interactions Checker indicates a major interaction
between Leflunomide and Decitabine in conjunction since both are
immunosuppressants and can have additive effects to increase risk
of serious infection. Ranked third, Pentoxifyline, a vasodilator and
anti-inflammatory used to improve blood circulation, is predicted to
interact with Practolol, a beta-blocked formerly used to treat cardiac
arrhythmias. Although Drugs.com does not list this particular interaction,
the Interactions Checker lists moderate interaction between Propranolol,
beta-blocker now used in place of Practolol, and Pentoxifyline. The
prediction of an effect on Pentoxifyline by a drug chemically similar to
Propranolol also demonstrates the effectiveness of the PSL triad rules.
The propagation of likely interaction across drugs that are similar is also
evident in the second ranked prediction of interaction between Glipizide
and Tolazamide. Both are sulonyureas like Acetohexamide and are used to
treat type-II diabetes. Though the drugs deliver similar responses, currently
there is no strong evidence of their interaction.

http://drugs.com
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We compare the predictions in Table 5 to the top ten novel interactions
predicted by the INDI system. In contrast, only three out of the ten
predictions made by INDI can be verified by BioInteractor or Interactions
Checker: (1) Ciprofloxacin and Lomefloxacin (rank 2) (2) Methotrexate
and Lomefloxacin (rank 4) (3) Mifepristone and Lomefloxacin (rank
6). There are no overlaps with the predictions ranked highly by PSL.
Lomefloxacin and Ciprofloxacin both fight infection, Methotrexate treats
cancers and Mifepristone ends pregancy. Interestingly, both the collective
PSL model and the INDI system predict interactions involving major
cancer drugs, Decitabine and Methotrexate, respectively.

5 Discussion

In this work, we formulate the problem of collective drug-drug interaction
prediction. We introduce a joint probabilistic approach using the PSL
framework to fuse multiple sources of similarity information together
with domain-knowledge of the network structure for this domain. The
originality of this work lies in proposing and experimentally validating a
highly scalable, collective probabilistic approach for DDI prediction that
is easily extensible with different sources of information and similarity
measures. We evaluate our approach on two datasets containing three types
of interactions, including one extracted for this work with known Drugbank
IDs for additional validations. We perform ten-fold cross-validation on all
settings and see that our collective PSL model significantly outperforms
two other similarity-based methods, including the state-of-the-art INDI
system, on two important metrics for link prediction, AUPR and AUC.
Our best performing PSL model improves more than 50% upon AUPR
of both baselines and achieves a best AUC of 0.97. Moreover, the non-
collective similarity-based method implemented in PSL also significantly
outperforms INDI in two settings and performs comparably to INDI in
other settings. This result also highlights the effectiveness of PSL as
an extensible framework for similarity-based reasoning that enjoys the
benefits of collective inference shown by the first result. Furthermore,
the top then predictions of our best performing collective PSL methods
contain five interactions that are unseen in Drugbank but substantiated by
Drugs.com and the BioInteractor tool on Drugbank. This result signifies
the usefulness of our collective approach for producing high-quality
predictions that can be verified experimentally downstream. Another
benefit of our collective PSL method is scalability and speed. The focus
of the INDI method is combining similarities by computing interaction
edge-based similarity score using a nearest-neighbor search approach. This
feature computation is a computationally expensive procedure, requiring
O(n4) passes over the drug entities. For a dataset containing 807 drugs,
this computation takes approximately 12 hours on average per fold on a
single 32GB machine with 4 cores. The comparable non-collective PSL
model introduced in this work takes approximately 1 hour for a round
of weight learning and inference per fold on the same machine. The
collective PSL model completes computation for a fold in approximately
7 hours. The PSL framework admits highly efficient, polynomial-time
inference and here, we further reduce computational complexity by
blocking unnecessary groundings of the model. Scalability is crucial for
link prediction tasks in increasingly massive biological networks, as new
drugs are frequently introduced.

The task of DDI prediction is closely related to problems of predicting
drug side effects, drug adverse reactions, and synergistic drug pairs. In
fact, predicting synergistic drug interactions is just a specific subtask of
the DDI prediction problem. Our collective approach for similarity-based
reasoning in networks can be applied and generalized to all these related
settings.
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